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Abstract

Axisymmetric indentation of a ~at surface is considered] speci_cally\ the case of ~at!ended indenter with
rounded edges\ and the case of a shallow cone with a rounded tip[ Analytical solutions are obtained for the
normal and sequential tangential loading\ in both full or partial slip conditions "with the CattaneoÐMindlin
approximation#\ and for the complete interior stress _eld in all these conditions[

Implications for strength of the contact are discussed with reference to metallic or brittle materials\ with
the intention to shed more light in particular to the understanding of common {fretting fatigue| or {inden!
tation| testings with nominally ~at or conical indenters[ It is found that the strength of the contact\ which is
nominally zero for perfectly sharp ~at or conical indenters\ is well de_ned even for a small radius of
curvature[ This is particularly true for the ~at indenter\ for which the strength is even signi_cantly higher
than for the classical Hertzian indenter for a wide range of geometrical and loading conditions\ rendering it
very attractive for design purposes[ Þ 0888 Elsevier Science Ltd[ All rights reserved[
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0[ Introduction

Indentation testing of brittle or semi!brittle materials\ such as ceramics or glasses\ provides
the potential to measure several important physical properties\ from the fracture toughness to
characteristic ~aw size distributions\ to residual stress states\ depending on what is assumed\ the
details of the test carried out\ and the method of analysis[ Tests may be carried out either using
blunt indenters\ normally exempli_ed by the Hertzian cone crack test\ and by sharp indenters\
typically a Vickers pyramid\ a Berkovtich pyramid\ or a cone[ The second class of indenters have
the important property that they provoke a limited amount of plasticity at the vertex of the

� Fax] 99 33 0754 168 791



M[ Ciavarella : International Journal of Solids and Structures 25 "0888# 3038Ð30703049

indenter\ which produces a residual stress _eld promoting crack initiation\ whilst the _rst have the
virtue of producing a well de_ned non!singular stress _eld\ although at the possible expense of
causing crushing or plastic failure before a crack form[ It should be noted that in his classic tests
forming circular cracks\ some of which were developed into {cone frusta|\ Roesler in fact used a
~at!ended indenter\ rather than a sphere "Roesler\ 0846#[ In this paper we wish to contribute to
the literature quantifying the stress state developed for each of these classes of tests\ by formulating
solutions to]

"a# the problem of a ~at!ended circular indenter having a _nite curvature at the edge\ rather than
an abrupt edge[ This permits us to use an elasticity solution to a half!space problem for both
the indenter and the substrate\ and so the usual idealization of a rigid indenter is not required[

"b# the problem of a conical indenter having a _nite curvature at the tip[ Again a half!space
idealization for both the indenter and the indented material is used\ so that\ if the indenter is
given a _nite elasticity\ the solution is appropriate only if the cone angle is large[

In addition to these examples of indenters used for testing\ contacts involving nominally ~at
bearing surfaces occur widely in engineering practice\ such as supporting feet:pads\ or electrical
brushes[ There is therefore considerable practical motivation to study each of these geometries\
and\ in particular\ to examine the in~uence of a round!o} of either a cone apex or punch edge\ as\
in each case\ the local singularity will be removed\ and give rise to a well!posed problem within
elasticity theory[ Such rounding o} will be present in practice\ either because of limitations of the
accuracy of the manufacturing process\ or because localised plasticity during the _rst application
of load will have caused local plastic ~ow\ hence relieving the singularity[

Usually\ the solution adopted for the ~at "axisymmetrical# indenter is that due to Boussinesq
"see\ e[g[ Timoshenko and Goodier\ 0869# in which it is assumed that the indenter itself is rigid\
and is pressed into a compliant\ elastic\ half!space[ The contact is complete\ the pressure distribution
at the edges of the contact presents a square root singularity\ and hence so are all the components
of the local stress _eld "sij ½ 0:zr\ where r is the distance from the sharp corner#[ Physically\ this
is an unrealistic limiting case\ because of the inevitability of plastic ~ow\ and also because the
assumption that the indenter is always much more rigid than the counter surface is not always
tenable[0 Turning to the case of conical indenter\ the half!space formulation is appropriate for
shallow external angles\ and gives a weak\ logarithmic singularity at the tip "Sneddon\ 0840#\ which
again is\ in practice\ relieved by small scale plasticity[ In both cases\ the solutions are somewhat
unsatisfactory\ in that the strength of the contact is di.cult to determine "concepts of Fracture
Mechanics would be the best choice\ although the singularity arising is not the classical one for a
crack\ and the implications of the stress intensity factor for the contact strength are unclear#[

With these preliminaries\ the present paper provides insight into the contact geometries described
for normal indentation\ full sliding\ or partial slip of a static contact due to sequential application
of normal and tangential loads^ the last represents a generalisation of the celebrated CattaneoÐ

0 The proper elastic formulation for indenter and substrate of comparable elastic constants should be the one
appropriate to a cylindrical domain\ which requires an intense numerical e}ort\ rendering it less attractive[ Also\ a
singularity will still be present\ although of lower degree than that implied by the Boussinesq solution "Khadem and
O|Connor\ 0858#[



M[ Ciavarella : International Journal of Solids and Structures 25 "0888# 3038Ð3070 3040

Fig[ 0[ Geometry and coordinate system of the problem[ "a# Flat punch with rounded corner^ "b# Conical punch with
rounded tip[

Mindlin problem "Cattaneo\ 0827^ Mindlin\ 0838#[ Solutions are also developed for the interior
stress _eld and issues related to strength of the contact addressed\ with particular reference to
elastic indentation testing[

1[ Formulation

The problem will be formulated as an elastic punch indenting an elastic half!space\ which may\
in general\ be of di}erent elastic properties\ although\ if the bodies are not {elastically similar| "see
below#\ the contact must be lubricated for the solution to be precise\ in order to eliminate the
presence of shearing tractions[ The geometries examined are shown in Fig[ 0"a# and "b#[ The use
of the half!space formulation is certainly justi_able for the rounded conical punch] it has been
used successfully already for the sharp punch "Sneddon\ 0840\ using Hankel Transforms\ and more
recently\ Sack_eld et al[ "0884#\ using Love|s potentials and Abel integral equations#\ provided
that the external cone angle\ u\ is small[ In the case of ~at punch\ the half!space idealization will
apply providing that the contact disk does not penetrate too far into the rounded o} region\ i[e[
that\ in the notation of Fig[ 0"a#\ a does not approach b¦Rc\ so that there is su.cient material
around the contact to provide support[ Analogous plane cases have been solved which show that\
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even if the radius of the edge curvature is only a small fraction of the contact disk radius\ the
solution is still quite satisfactory "Ciavarella et al[\ 0877a\ b#[

Well!established techniques for the solution of integral equations for elastic half!spaces can be
used\ as reported in the monographs on contact problems in the theory of elasticity "Shtaerman\
0838^ Gladwell\ 0879^ Hills et al[\ 0882#[ In particular\ for the normal axisymmetric contact problem
general solutions\ due to Shtaerman\ are known\ which we will follow here\ with minor changes in
notation^ for tangential loading\ a generalized version of the Cattaneo and Mindlin procedure
"Cattaneo\ 0827^ Mindlin\ 0838#\ due to the _rst author "Ciavarella\ 0887a\ b\ c#\ will be used[
Finally\ the potential formulation will be employed for determining the complete interior stress
_eld "see Love\ 0816\ Hills et al[\ 0882\ Section 6[0#[

2[ Normal loading

We start with the governing integral equation for the general axisymmetric normal contact
problem\ which links the pressure distribution p"r# over the contact area S\ of radius a\ to the
relative surface normal displacements uz"r#

A
1p g gS

p"r?#
R

dS � uz"r#\ 9 ¾ r ¾ a "0#

where r? is the radial coordinate of the integration point\ whose distance from the _eld point\ of
radial coordinate r\ is given by R[ Here A is a measure of the {composite compliance| of the bodies\
de_ned by

A
1

�
0−n1

0

E0

¦
0−n1

1

E1

"1#

where Ei is Young|s modulus and ni Poisson|s ratio of body i[
The equation written is precise only when no tangential radial tractions arise\ which means that

either] "i# the coe.cient of interfacial friction\ f\ must be zero\ or "ii# the materials are elastically
similar\ or\ more precisely\ Dundurs| second constant b is zero\ i[e[

0−1n

m0

�
0−1n1

m1

[ "2#

This removes the possibility of a change in the surface relative pro_le[
Side conditions give a unique solution of eqn "0#\ which are] "i# the surface normal displacements

of the two bodies must match in the contact area^ "ii# there can be no interpenetration external to
the contact area^ "iii# no tensile tractions can be transmitted between the bodies[ The _rst two
translate\ respectively\ to

uz"r# � an−z"r#\ 9 ¾ r ¾ a "3#

uz"r# × an−z"r#\ a ¾ r "4#
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where an is the relative approach of two remote points\ one in each body\ and the indenter1 pro_le
is described by z"r#[ The solution\ in the case when p"a# is bounded "the so!called incomplete
contact conditions#\ is "Shtaerman\ 0838#

p"r# � −
1

pA g
a

r

F?"s# ds

zs1−r1
\ 9 ¾ r ¾ a\ "5#

where the auxiliary function F"r# has been introduced

F"r# � an−r g
r

9

z?"t# dt

zr1−t1
\ 9 ¾ r ¾ a "6#

and an is given by "Shtaerman\ 0838#

an � a g
a

9

z?"t# dt

za1−t1
[ "7#

Equilibrium between the applied load and the pressure distribution can be written as "Shtaerman\
0838#

P � g
a

9

1prp"r# dr �
3
A g

a

9

z?"t#t1 dt

za1−t1
[ "8#

The solution may be completed by the representation of stress and displacement _elds in each
body\ but this point will be discussed in Section 4[

2[0[ Flat punch with radiused corner

In this case\ the pro_le of the geometry is described by

z"r# � 8
9\ 9 ¾ r ¾ b

k
1
"r−b#1\ b ¾ r ¾ a

\ "09#

where k is the curvature of the rounded part\ i[e[ k �"0:Rc#\ see Fig[ 0"a#[ Let us start the solution
from the loadÐcontact radius relation[ Computing the pro_le derivative from "09# and carrying
out the integration of eqn "8#\ with the substitution t � a cos 8\ gives

g
a

b

"t−b#t1 dt

za1−t1
�

b2

4 cos2 89

ð2 sin 89¦sin2 89−289 cos 89Ł "00#

and we may obtain the result that the contact load P is given by

1 The case of two half!spaces having arbitrary pro_les is readily incorporated by writing z"r# � z0"r#−z1"r#\ where
z0"r#\ z1"r# describe the individual pro_les[
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Fig[ 1[ Pressure distribution "pa1:P#p"r:a# for a ~at indenter with rounded corners] "b:a � 9[9\ 9[0\ [ [ [ \ 0#[ Bold lines
correspond to the limit cases] Hertzian b:a � 9 and rigid sharp ~at punch b:a � 0[

P �
1kb2

2A
2 sin 89¦ sin2 89−289 cos 89

cos2 89

\ "01#

where the auxiliary angle 89 is introduced as

cos 89 �
b
a

[ "02#

The contact sti}ness\ i[e[ the approach of remote points in the normal direction\ an\ is obtained
from "7# and "09# as

an � ka g
a

b

"t−b# dt

za1−t1
� ka g

89

9

"a cos 8−b# d8 � ka"a sin 89−b89# "03#

and so

an � kb1 tan 89−89

cos 89

[ "04#

Turning to the pressure distribution\ this is now found directly by carrying out the integration of
"5# as shown in Appendix I[ The result\ non!dimensionalized by the mean value pm �"P:pa1#\ is

p"r#
pm

�
2 cos 89

2 sin 89¦ sin2 89−289 cos 89

Cfl 0
r
b1\ 9 ¾ r ¾ a "05#

where the function C~"r:b# is given in Appendix I[ In particular\ note that the pressure at the
~at:round transition point "which is not the location of the maximum pressure\ but is not far
away# is obviously _nite[ The pressure distribution for several values of the ratio b:a is plotted in
Fig[ 1[ It may be appreciated that the transition from the Hertzian distribution "b:a � 9# towards
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the upper limit distribution of the rigid ~at punch one "b:a � 0# is quite smooth\ and gives a
maximum pressure which is lower than the Hertzian when b:a ¾ 9[6 "about#[ In this range\ note
that the pressure is quite close to uniform[

2[1[ Conical punch with rounded tip

In the case of the conical punch\ Fig[ 0"b#\ the geometry de_ned by

z"r# �

F

j

J

f

u

1b
r1\ 9 ¾ r ¾ b

ur−
u

1
b\ b ¾ r ¾ a

\ "06#

where u is the external angle of the cone\ that has to be small for the half!space approximation to
be valid\ i[e[ u ¹ tan u[ Note that u:b � k � 0:Rc[

Let us start\ again\ from the loadÐcontact radius relation[ Given the geometry eqn "06#\ and
computing the derivative\ we have from the integration of eqn "8#\ for a × b\ the relation

P �
3
A g

a

9

z?"t#t1 dt

za1−t1
�

3
A

u

b g
b

9

t2 dt

za1−t1
¦

3
A

u g
a

b

t1 dt

za1−t1
[ "07#

Now\ with the substitutions t � a cos 8\ and cos 89 � b:a we obtain

AP
3u

b1

5 cos2 89

ð3¦289 cos 89−2 sin 89− sin2 89Ł[ "08#

Regarding the approach an\ we obtain\ with the usual substitutions from "7#

an �
bu

cos1 89

"0− sin 89¦89 cos 89#[ "19#

Finally\ carrying out the integration of "5#\ as shown in Appendix II\ the non!dimensionalized
pressure is given by

p"r#
pm

�
5 cos 89

3¦289 cos 89−2 sin 89−sin2 89

Ccon 0
r
b1\ 9 ¾ r ¾ a[ "10#

Appendix II gives the explicit form of the function Ccon"r:b#[ In the case a ³ b the contact is
obviously Hertzian\ and so well!known relations apply "Shtaerman\ 0838^ Hills et al[\ 0882^
Gladwell\ 0879#[

Figure 2 shows the pressure distribution for b:a � 9\ 9[0\ [ [ [ \ 0[ It may be appreciated that\ as
b:a : 9 the maximum pressure "at the contact centre r � 9# becomes increasingly high "indeed\ it
grows logarithmically#[
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Fig[ 2[ Pressure distribution "pa1:P#p"r:a# for a conical indenter with rounded apex] "b:a � 9[9\ 9[0\ [ [ [ \ 9[8#[ Bold lines
correspond to the limit cases] sharp conical punch b:a � 9 and Hertzian b:a � 0[

2[2[ Comparison

Figure 3 shows a comparison between the two cases regarding the variation of load " for a given
elastic compliance A and geometry# with b:a[ Note that the Hertzian value corresponds to b:a � 9
and b:a � 0\ for the ~at and conical case\ respectively[ As the quantities plotted are\ AP:ka2\
bAP:ua2\ respectively\ for ~at and conical indenters\ i[e[ APRc:a2 in both cases\ the Hertzian limit
case corresponds in respective limits[

Figure 4 shows the variation of approach in normal direction " for a given load P and compliance
A# "Rcan:a1# �"an:ka1# for ~at "bold line# and "Rcan:a1# �"ban:ua1# conical indenter as a function
of b:a[ Notice that the approach is always higher for the conical indenter\ but since we are plotting
the quantity Rcan:a1 for comparison purposes\ this quantity goes to zero in the limit cases of sharp
punch\ as Rc � 9[ Notice that the variations of Rcan:a1 are not too far from linear with b:a[

3[ Tangential loading

A solution will now be developed for the case of tangential loading\ again assuming b � 9 ði[e[
eqn "2# holdsŁ\ by appealing to a recent general result "Ciavarella\ 0887a\ b\ for the plane problem\
0887c\ for 2!D problems#[ This solution\ which will be brie~y discussed below\ is exact "i[e[ it
satis_es all contact requirements and Coulomb|s friction law\ including the normality rule#\ only
"i# for plane problems or "ii# if the materials present no Poisson|s e}ect\ i[e[

gA �
n0

m0

¦
n1

m1

� 9 "11#

where g is now de_ned as the {combined Poisson|s ratio|[ However\ for a single axisymmetric
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Fig[ 3[ Non!dimensional load "APRc:a2# �"AP:ka2# for ~at indenter "bold line# and "APRc:a2# �"bAP:ua2# for a conical
indenter as a function of b:a[

Fig[ 4[ Non!dimensional approach "Rcan:a1# �"an:ka1# for ~at indenter "bold line# and "Rcan:a1# �"ba:ua1# for a conical
indenter as a function of b:a[
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contact\ the only approximation involved is the almost universally accepted one introduced by
Cattaneo "0827# and Mindlin "0838#\ for the solution of the corresponding problem for Hertzian
contacts[2 The exact solution implies a slightly non!circular stick zone\ and requires a numerical
non!axisymmetric solution\ but the e}ort to do so is not justi_ed by the small correction to the
resultant stress state "Munisamy et al[\ 0883#[3

Bearing these preliminaries in mind\ consider the following loading sequence] apply _rst the
normal force alone\ so that the stick zone envelops the entire contact[ A monotonically increasing
shearing force\ Qx\ will\ therefore\ give rise to a receding stick problem\ according to Dundurs|
classi_cation "Dundurs\ 0864#\ and we can therefore solve directly for any particular value of Qx[
A solution can be developed with the shearing traction distribution acting in the direction of the
tangential force only\ i[e[ a distribution qx"x\ y#[ Equilibrium requires

Qx � g gS

qx"x\ y# dx dy[ "12#

Relative tangential displacement of surface particles within the stick zone must be constant\ as
Newton|s law requires shearing tractions to be equal and opposite in the two bodies\ so that

ux"x\ y# � dx^ uy"x\ y# � dy\ "x\ y# $ Sstick "13#

where the rigid body displacement in the direction orthogonal to the load\ dy\ is zero in the
axisymmetric case\ due to symmetry[ Coulomb|s law requires

=q"x\ y# = 6
³fp"x\ y#\ "x\ y# $ Sstick

�fp"x\ y#\ "x\ y# $ Sslip

[ "14#

and that shear traction q"x\ y# � qx"x\ y#ix¦qy"x\ y#iy must always oppose the direction of relative
change in the direction of slip[

Let us therefore write the two integrals that relate the displacement of particles parallel with the
surface to the surface tractions\ together with the boundary condition "13#\ in the form

dx �"0¦g#U"x\ y#−g
11

1x1
V"x\ y#\ "x\ y# $ Sstick "15#

dy � −g
11

1x 1y
V"x\ y#\ "x\ y# $ Sstick "16#

where we de_ne U"x\ y#\ V"x\ y# as

2 Although not recognized originally by the original authors "there is a footnote only in Mindlin "0842# and Dere!
ciewicz|s paper#\ the solution implies non!zero relative displacements uy in the slip area\ so that the slip direction is not
truly colinear with the shearing traction direction[

3 For dissimilar elastic materials "b � 9#\ the pressure distribution and shearing tractions in both the normal and\ a
fortiori and tangentially loaded problem will present a complicated pattern\ and the stick!slip boundary a complicated
shape\ strongly dependent on the actual loading path[
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U"x\ y# �
1p

A g gS

qx"x?\ y?#
R

dx? dy?\ V"x\ y# �
1p

A g gS

Rqx"x?\ y?# dx? dy? "17#

where R � z"x−x?#1¦"y−y?#1[ From "16#\ follows that V"x\ y# has the form

V"x\ y# � `0"x#¦`1"y#−
dy

g
xy\ "x\ y# $ Sstick[ "18#

Moreover\ on considering U"x\ y# � DV"x\ y# as it follows from direct computation\ where D is the
1!D Laplacian operator\ "15# can be rewritten as

dx � `ý0"x#¦"0¦g#`ý1"y#\ "x\ y# $ Sstick "29#

which is a di}erential equation with separate variables\ with solution

`ý0"x# � h0\ `ý1"y# � h1\ "x\ y# $ Sstick "20#

satisfying the algebraic relation4

dx � h0¦"0¦g#h1[ "21#

Therefore\ if we _nd a distribution qx satisfying the following condition in the stick area

U"x\ y# �
1p

A g gS

qx"x?\ y?#
R

dx? dy? � DV"x\ y# � h0¦h1\ "x\ y#Sstick "22#

plus the other conditions in the slip area\ and the obtained V"x\ y# is a second!degree polynomial
in x and y in Sstick\ this is an exact solution to the problem[ This condition is always satis_ed for
axisymmetric problems5 like ours\ and the solution of the problem can be obtained considering
qx"r# � fp"r#−q�x"r# in the stick area\ qx"r# � fp"r# in the slip area\ and obtaining from eqn "22#*
using "0# for the contribution of the pressure*an integral equation in the stick area in terms of a
corrective unknown part only

1p

A g gSstick

q�x"r?#:f
R

dS � uz"r#−
h0¦h1

f
\ r $ Sstick "24#

4 We are assuming here the stick area is simply!connected[
5 In fact\ being qx\ and hence so V\ function of r only\ eqn "22# reads

DV"r# �
d1V"r#

dr1
¦

0
r

dV"r#
dr

� h0¦h1 "23#

has a general solution "neglecting logarithmic terms# V"r# � ð"h0¦h1#:3Łr1¦c[
More general cases of exact solutions are possible\ as long as V is a secondÐdegree polynomial in x and y[ The most

relevant are Hertzian elliptical contacts "as proved explicitly by Cattaneo\ 0827# and plane problems "Ciavarella\ 0886a\
b#[ Indeed\ for plane problems\ with no dependence\ say\ on y\ DV"x# �"d1V"x#:dx1# � h0¦h1 has a general solution
V"x# � ð"h0¦h1#:1Łx1¦c[ Other particular cases of such exact solutions may exist\ with a more general shape of stick
area\ but the question of limited practical interest\ as long as the surface pro_les to produce that contact area and
symmetry are of rather particular form\ so that the property will hold only for very special values of geometry and load[
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i[e[ the corrective part q�x"r?#:f can be found from a normal contact problem of the kind "0# for a
reduced indentation[ The details of the solution\ including the proof that the inequalities in the
slip area also translate to the non!interpretation condition of the corrective contact problem\ are
discussed in the cited papers\ which provide further details[ Here we just record that all the relevant
quantities can be obtained from a superposition of the normal load solution\ using the corrective
load de_ned by

Q�x � fP−Qx[ "25#

The only care required is in the calculation of displacements\ but we _nd that in geometrically
axisymmetric problems\ with h0 � h1 from eqn "21#

dx �"h0¦h1# 00¦
g

11\ "26#

and therefore the approach in the tangential direction is related to the superposition of approach
in the normal direction through the factor ð0¦"g:1#Ł\ i[e[

at

f
� 00¦

g

11"an−a�n#[ "27#

3[0[ Flat punch with radiused corner

The size of the stick zone is given implicitly by the relation between f9 and the corrective load
Q�\ i[e[ using "8# and "25#\ "01#

Q�
f

�
1kb2

2A
2 sin f9¦ sin2 f9−2f9 cos f9

cos2 f9

\ "28#

where the auxiliary angle f9\ has been introduced as

cos f9 �
b
c
[ "39#

The approach of two remote points at in tangential direction is given by "27# and "04#

at

f
� kb1 00¦

g

11 0
tan 89−89

cos 89

−
tan f9−f9

cos f9 1[ "30#

Lastly\ the non!dimensional corrective shearing distribution is given by "24# and "05#

pb1

Q�x
q�x"r# �

2 cos2 f9

2 sin f9¦sin2 f9−2f9 cos f9

Cfl 0
r
b1\ 9 ¾ r ¾ c "31#

where the function C~"r:b# is given in Appendix I[
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3[1[ Conical punch with rounded tip

In the case of the conical punch\ we need to distinguish two cases[ First\ for the case when c × b\
so that the stick zone disk envelops the tip radius\ the solution is given by the relations "8#\ "25#
and "08#\ i[e[

Q�
f

�
1ub1

2A cos1 f9

ð3¦2f9 cos f9−2 sin f9−sin2 f9Ł "32#

and the approach from "27# and "19#

at

f
� bu 00¦

g

11 0
0−sin 89¦89 cos 89

cos1 89

−
0−sin f9¦f9 cos f9

cos1 f9 1 "33#

whereas the non!dimensionalized corrective shearing distribution is given by "24# and "10#

pb1

Q�x
q�x"r# �

5 cos2 f9

3¦2f9 cos f9−2 sin f9−sin2
9 f

Ccon 0
r
b1\ 9 ¾ r ¾ c[ "34#

Appendix II gives again the function Ccon"r:b#[
In the case\ c ³ b\ when the stick zone lies within the radiused portion of the indenter\ the non!

dimensionalized corrective shearing distribution is given by the Hertzian distribution "Hills et al[\
0882#

pc1

Q�x
q�x"r# �

2
1X 0−0

r
c1

1

\ 9 ¾ r ¾ c "35#

and the relationship between the corrective shearing force\ Q�\ and the size of the stick zone is
given by

Q�
f

�
7uc2

2Ab
"36#

"where we have taken the curvature to be k �"0:Rc# � u:b#\ and the approach of remote points in
the tangential direction at is given by "27#\ "19# together with the Hertzian value "Hills et al[\ 0882#

at

f
� bu 00¦

g

11 0
0−sin 89¦89 cos 89

cos1 89

−
c1

b11[

4[ Strength of the contact

The explicit calculation of the interior stress _eld for a general pro_le may be obtained either by
a series solution\ using an expansion of the pressure in terms of Legendre polynomials\ or by an
analogous procedure expanding the contact pro_le itself\ as described in\ for example "Sack_eld
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and Hills\ 0877# or "Hills et al[\ 0882#[ However\ a direct solution will be used here\ which gives
rise to a rapidly convergent numerical integration[6

4[0[ Theory

The most suitable technique to deal with axisymmetric problems is to appeal directly to potential
theory "see Love\ 0816\ for further details#[ It may be shown that the stress and displacement _elds
can be obtained by de_ning two harmonic potentials\ N and T\ to model the e}ect of normal and
tangential loading in x!direction\ respectively[ The displacement _eld is obtained as

1mux � −"0−1n#Nx−zNxz¦1nTxx¦1Tzz−zTxxz "37#

1muy � −"0−1n#Ny−zNyz¦1nTxy¦1Tzz−zTxyz "38#

1muz � 1"0−1n#Nz−zNzz¦"0−1n#Tzx−zTxzz "49#

and the stress _eld as

sxx � −Nxx−1nNyy−zNxxz¦1"0¦n#Txzz¦1nTxxx−zTxxxz "40#

syy � −Nyy−1nNxx−zNyyz¦1nTxxx−zTxyyz "41#

szz � −Nzz−zNzzz−zTxzzz "42#

sxy � −"0−1n#Nxy−zNxyz¦1nTxxy¦Tyzz−zTxxyz "43#

syz � −zNyzz−zTxyzz "44#

szx � −zNxzz¦Tzzz−zTxxzz[ "45#

The potentials are de_ned from

N � Im 6g
a

9

`"t#ðz0 ln"z0¦R0#−R0Ł dt7 "46#

T � Im 6g
a

9

h"t# $
0
1 $z1

0−
0
1

r1% ln"z0¦R0#−
2
3

z0R0¦
0
3

r1% dt7 "47#

where

z0 � z¦it "48#

R1
0 � x1¦y1¦"z¦it#1 "59#

and\ _nally\ `"t# and h"t# are real functions of t\ obtainable in full sliding conditions as "Hills et
al[\ 0882\ f[ 6[12#

6 Except for the region of the surface contact disk\ where numerical care is required for the nearly singular or singular
integrals to be computed[
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`"t# �
h"t#
f

�
1
p

d
dt g

a

t

rp"r# dr

zr1−t1
[ "50#

For our purposes\ it is preferable to obtain the functions `"t# and h"t# in terms of the pro_les\ and
to compare eqn "5[00# with eqn "6[12# of Hills et al[ "0882#\ which gives\ immediately

`"t# �
h"t#
f

�
1

pA
d1

dt1 g
t

9

rz"r# dr

zt1−r1
[ "51#

This is a more convenient form for our purposes\ as the function z"r# is elementary\ whereas the
function p"r# is not[ Elementary expressions will be obtained for `"t# in both cases of a ~at indenter
with rounded corner and conical with rounded tip[

Notice that in the Cattaneo|s partial slip regime\ the required potential is Tps � T−T�\ where T
is given by eqn "47#\ whereas T� is given by "47# by changing the upper limit of integration with
c[ Therefore\ the {partial slip potential| Tps can also be obtained by considering the integration in
"47# extended from c to a[

4[1[ Application to rounded indenters

For the ~at indenter\ from "51# it is evident that `"t# � 9 for t ³ b\ whereas for t × b the integral
required is ðusing eqn "09#Ł

g
t

9

rz"r# dr

zt1−r1
�

k
1 g

t

b

r"r−b#1 dr

zt1−r1
[ "52#

Therefore\ we obtain\ for full sliding\ and t × b

`"t# �
h"t#
f

�
1k
pA $1"t1−b1#0:1−b arccos

b
t%[ "53#

In the limit as b : 9\ we re!obtain the Hertzian value `"t# �"h"t#:f # �"3k:pA#t[
For the conical indenter the relevant integral is given by " from 51# using "06#

g
t

9

rz"r# dr

zt1−r1
�

F

G

j

J

G

f

u

1b g
t

9

r2 dr

zt1−r1
^ t ³ b

u

1b g
b

9

r2 dr

zt1−r1
¦u g

t

b

r1 dr

zt1−r1
−

u

1
b g

t

b

r dr

zt1−r1
^ t × b

[ "54#

Now\ with the help of some elementary integration\ we get simply] in the case t × b

`"t# �
1u

pAb $1t−1zt1−b1¦b arccos
b
t% "55#

whereas if t ³ b
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`"t# �
3u

pAb
t[ "56#

Note that in the limit as b : 9\ we re!obtain the conical punch value `"t# �"h"t#:f # �"u:A#[ Also\
in the limit as b : a\ we re!obtain the Hertzian value

`"t# �
3u

pA
t
a

[ "57#

Once `"t# is known\ the determination of the stress _eld from eqns "40#Ð"42# or displacements
from eqns "37#Ð"49# is relatively straightforward[ Details of the computation of the potentials
needed "46# and "47# and their derivatives are given in Sack_eld and Hills "0877# and Hills et al[
"0882#\ and reported brie~y in Appendix III[

4[2[ Results

It is impractical to present comprehensive results for the interior stress _eld\ as there are many
independent parameters involved\ namely for each geometry\ "b:a\ n# in the normal indentation
case\ "b:a\ n\ f # for full sliding problems\ and "b:a\ n\ f\ c:a# for partial slip problems^ therefore\ a
complete study is impractical if we are not guided by some preliminary general considerations]

For normal loading

, where failure is controlled by yielding\ there will be a transition between the two limiting cases
of Hertzian indenter\ where the maximum shear stress arises subsurface\ and the sharp punches\
where this maximum is at the singularity point[ In the case of {sharp| indenters softened in their
intensity by the inclusion of a radius\ there is a great deal of di}erence between the ~at indenter
and the cone\ as in the latter case the strength is always lower than Hertzian\ whereas for the ~at
ended punch the strength may be higher\ as the pressure tends to be more {uniform|\ over the
contact patch[

, where failure is controlled by the initiation of surface defects and their propulsion\ the maximum
tension induced at the surface the most important quantity[ However\ as shown by Way "0830#\
the surface value outside the contact patch does not depend on the exact distribution of pressure\
for purely normal loading\ and therefore for very small defects the maximum tension is insensitive
to the actual pressure distribution[ Di}erences are found only for those cracks whose crack tip
is su.ciently subsurface for the e}ect of the interior stress _eld to be of importance\ but
insu.ciently deep for the zone of radial compression to be entered[

For sliding problems

, the maximum of tension always arises at the trailing edge of the contact patch\ and its value for
the conical punch\ is therefore bound between the {sharp| cone solution and the Hertzian\ as
lower and upper limits\ respectively[ Also\ the maximum tension is strongly dependent on the
value of the shearing force\ but only more weakly controlled by the shearing traction distribution[

Guided by these general considerations\ it is possible now to explore the strength in greater
detail\ splitting the discussion for the two geometries[
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4[2[0[ Flat indenter
Normal loading[ Figure 5"a#Ð"c# shows plots of the normalised von Mises yield parameter\

a1zJ1:P\ for representative cases of normal loading[ As the ratio "b:a# becomes very small the
solution tends to the standard Hertzian case\ whilst for very high "b:a# the geometry tends to the
~at!ended punch value[ Perhaps surprisingly\ varying "b:a# causes the strength of the contact _rst
to increase with respect to the Hertzian case\ then to decrease very slowly[ This can be seen in Fig[
5"a#\ which is for b:a � 9[14\ the maximum value of von Mises yield parameter\ instead of lying
at the subsurface point on the centreline as for the Hertzian case\ moves to a region of almost
constant value[ In Fig[ 5"b#\ which is for b:a � 9[4\ the maximum lies in a wide\ ring!shaped region
close to the contact patch[ Finally\ in Fig[ 5"c#\ when b:a � 9[64\ the maximum is again in a
localized region\ moving towards the contact edge\ where the limiting sharp!cornered\ ~at case
b:a � 0 has its singularity[

Results from several plots of this kind are summarized in Fig[ 6\ which gives the elastic limit\
P:ka1\ where k is the yield strength in pure shear\ for normal indentation as a function of the ratio
b:a\ according to von Mises| yield criterion] over the wide range 9 ³ b:a ³ 9[72 the strength is in
fact higher than the Hertzian case in the normal frictionless contact\7 with a maximum increase of
more than 19)\ corresponding to values in the range b:a � 9[3Ð9[5[ This is because the pressure
is close to uniform in that range "see Fig[ 1#\ and the maximum of the yield parameter a1zJ1:P
moves from a well!de_ned point at the centreline to a region of nearly minimum value as described
above] note that\ in the {optimal| uniform pressure case\ for our choice of n � 9[2\ the optimal
normalised von Mises| parameter is slightly greater than eight "Hills et al[\ 0882#[ For values of
b:a higher than 9[7 the strength decreases rapidly] therefore\ for design purposes\ it is safer to keep
the value of b:a "or\ equivalently\ the normalised load from eqn "01##\ lower than\ say\ 9[5[

Full slip[ We turn now to the case where a tangential load\ su.cient to cause sliding\ has been
applied[ Figure 5"d#Ð" f# show representative cases of full sliding conditions[ The results are
summarized in Fig[ 7 and show the dependence of the elastic limit P:"a1k# on the friction coe.cient
f[ First\ it is clear that\ starting from the Hertzian con_guration b:a � 9\ it is well known "Hills et
al[\ 0882# that\ for small coe.cients of friction\ less than about f � 9[22 the severest state of stress
remains below the surface[ Above this value the maximum moves to the surface\ showing a
discontinuity in the plot\ as the strength decreases much faster in the surface controlled region[
The same behaviour is also exhibited by rounded ~at contacts\ although the transition subsurfaceÐ
surface tends to occur at lower coe.cients of friction\ and moves monotonically towards the limit
of the sharp ~at punch\ where the severest state of stress is always on the surface\ at the contact
edge[ From Fig[ 7 several conclusions can be drawn] _rst\ it appears that\ for a high enough friction
coe.cient\ the increase in strength of the contact over the Hertzian value\ found in the range
b:a � 9\ 9[72 for the corresponding normal loading case " f � 9 in this _gure# tends to decrease[ In
fact\ for b:a ³ 9[72\ the strength of the contact becomes lower than the Hertzian case for surface!
limited cases[ For higher values of b:a\ the strength is always lower\ as was expected[ Therefore\ it

7 Notice that in the equivalent plane case a smaller range of b:a values was found where this held "9\ 9[44# "Ciavarella
et al[\ 0886b#[ This is physically reasonable\ as the maximum pressure close to the edges of the punch is lower than the
analogous plane case\ because of the axisymmetric conditions\ as the pressure contributes to the load by a multiplicative
factor of 1pr[
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Fig[ 5[ Example contour plots of von Mises| yield parameter a1zJ1:P\ for ~at indenter under sliding conditions] "a#
b:a � 9[14\ f � 9[9^ "b# b:a � 9[14\ f � 9[2^ "c# b:a � 9[4\ f � 9[9^ "d# b:a � 9[4\ f � 9[2^ "e# b:a � 9[64\ f � 9[9^ " f#
b:a � 9[64\ f � 9[2 "n � 9[2#[
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Fig[ 5*continued[
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Fig[ 5*continued[
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Fig[ 6[ Elastic limit P:ka1\ for normal indentation of a ~at indenter\ as a function of b:a[ The horizontal line gives the
strength for a Hertzian indenter "P:ka1# 3 4[73[ The ~at indenter has a higher strength for b:a ³ 9[72 "n � 9[2#[

Fig[ 7[ Elastic limit P:ka1\ for sliding indentation of a ~at indenter\ as a function of the coe.cient of friction\ f[ Ratio
b:a varying from b:a � 9 "Hertzian indenter# to b:a � 9[8 with steps 9[0 "n � 9[2#[

can be said that there is a good deal or reason to keep the strength subsurface controlled\
particularly if the contact is designed to take advantage of the rounded ~at con_guration with
respect to the classical Hertzian one[

Turning to the maximum tension arising at the trailing edge of the contact\ of relevance for the
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Fig[ 8[ Non!dimensional maximum tension "a1:fP#smax\Q
00 arising in the surface\ trailing edge of the contact\ for the case

of a ~at indenter under full sliding conditions\ as a function of b:a "n � 9[2#[ Notice that the tension due to the normal
load\ which is independent on b:a\ can be readily added and is "a1:P#smax\P

00 � 9[9526[ For b:a : 0 the maximum tension
tends to in_nity[

initiation and propulsion of surface cracks\ it should be noted\ from Fig[ 8\ that the maximum
increases steadily with b:a\ although the increase becomes particularly steep for b:a higher than
¼9[7[ This region must be examined carefully\ if the contact lies in this region and crack propa!
gation is a possibility[

4[2[1[ Conical indenter
The analysis just given for the ~at indenter is here repeated for the cone[ It is clear\ however\

that there is no advantage over a Hertzian design\ apart from a minor improvement\ under some
conditions\ in the maximum tension[ Figure 09"a#Ð"c# shows plots of the normalised von Mises
yield parameter\ a1zJ1:P\ for representative cases of normal loading[ The concentration of tension
occurs in a point subsurface on the centreline of the contact\ which moves from the centre for the
sharp cone case b:a � 9\ to the Hertzian value for b:a � 0[ This appears more clearly in Fig[ 00\
which shows plots of the normalised elastic limit P:"a1k#\ where k is the yield strength in pure
shear\ as a function of the ratio b:a[ It may be seen that the strength here is always lower compared
with the Hertz limiting case\ as expected\ since the pressure distribution here is more localized near
the centre of the contact[ As the elastic limit in the sharp wedge case is theoretically zero\ the major
result of the present investigation is to show that for a ratio b:a as small as 9[0 the elastic limit is
still about half the value for the Hertzian case[

Full slip[ Figure 09"d#Ð" f# show plots of a1zJ1:P\ for representative cases of tangential loading[
The results are summarized in Fig[ 01\ where the dependence of the elastic limit P"a1k# on the
friction coe.cient f is given[ It may be noted that the point where the strength becomes surface
controlled is at a value of f which decrease with b:a[ This is consistent with the observation that\
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Fig[ 09[ Example contour plots of von Mises| yield parameters a1zJ1:P\ for conical indenter under sliding conditions]
"a# b:a � 9[14\ f � 9[9^ "b# b:a � 9[14\ f � 9[2^ "c# b:a � 9[4\ f � 9[9^ "d# b:a � 9[4\ f � 9[2^ "e# b:a � 9[64\ f � 9[9^ " f#
b:a � 9[64\ f � 9[2 "n � 9[2#[
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Fig[ 09*continued[
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Fig[ 09*continued[
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Fig[ 00[ Elastic limit P:ka1\ for normal indentation of a conical indenter\ as a function of b:a[ The upper limit for b:a � 0
gives the strength for a Hertzian indenter "P:ka1# 3 4[73 "n � 9[2#[

Fig[ 01[ Elastic limit P:ka1\ for sliding indentation of a conical indenter\ as a function of the coe.cient of friction\ f[
Ratio b:a varying from b:a � 9[0 to b:a � 0 "Hertzian indenter# with steps 9[0 "n � 9[2#[

for the limiting sharp!point case\ the strength\ which is zero\ is always controlled by the singular
point in the centre of the contact surface[

Also of importance is the maximum tension induced at the surface\ as this is the quantity which
is responsible for initiating surface defects and their initial propulsion as cracks[ The transition
from the {sharp| solution to the Hertzian is displayed in Fig[ 02[ The variation is not particularly
enlightening[
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Fig[ 02[ Non!dimensional maximum tension "a1:fP#smax\Q
00 arising in the surface\ trailing edge of the contact\ for the case

of a conical indenter under full sliding conditions\ as a function of b:a "n � 9[2#[ Notice that the tension due to the
normal load\ which is independent on b:a\ can be readily added and is "a1:P#smax\P

00 � 9[9526[ Notice also that the
maximum tension is contained in the range "a1:fP#smax\Q

00 3 9[6−9[7[

5[ Conclusions

The problems of a ~at punch with rounded edge\ and a conical indenter with rounded tip\ have
been studied in detail[ This removes the singular characteristics of solutions used at present\ for
which the strength of the contact is not clearly de_ned\ and no clear impression of the strength of
the contact is apparent[ For the ~at punch\ Shtaerman "0838# provides a little!known solution in
quadrature for the pressures\ which has here been completed\ and extended to partial and full
sliding cases[ Then\ an analogous solution has been given for the case of the conical indenter[ We
have then given an analytical solution for the complete determination of the stress _eld\ that is
necessary for the understanding of the strength of the contact[ The results permit us to state that\
even for relatively small blend radii\ that the stress state is well!de_ned\ so that the use of classical
singular solutions can be misleading in engineering practice[

"0# Conical indenter

The strength appears to be still about halved with respect of a Hertzian contact when the ratio
b:a is as low as b:a � 9[0[ The maximum tensile stress in a sliding contact is always lower than the
Hertzian case\ although the advantage is small[

"1# Flat indenter

The strength of the contact appears to be quite high\ unless the corner is particularly sharp
"b:a × 9[7#[ Indeed\ for the range 9 ³ b:a ³ 9[7\ the strength of the contact is higher than for a
Hertzian contact\ particularly for normal indentation or sliding contacts with f ³ 9[2 "in partial
slip conditions\ for an even higher value of f #[ The concentration of tensile stresses at the trailing
edge in a sliding contact is shown\ vice!versa\ to be always signi_cantly higher than the Hertzian
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case\ but the transition to the in_nitely higher concentration predicted by the sharp ~at punch can
be considered slow[

For design purposes\ a complete set of practical diagrams has been given\ for normal or full
sliding loading conditions[ In the partial slip regime\ since the corrective shear distribution always
reduces the local value of the shearing traction\ and since they are the principal quantities con!
trolling yield\ the elastic limit for the full sliding can be considered an upper bound for strength\
therefore allowing a safe design[

Appendix I] Pressure distributions for the ~at punch

In order to obtain the pressure distribution\ according to the procedure given in Section 2\ let
us calculate the auxiliary function F"r#\ de_ned in eqn "6#\ so that\ considering the pro_le in eqn
"09#

F"r# � 8
an\ 9 ³ r ³ b\

an−kr g
r

b

"t−b# dt

zr1−t1
\ b ³ r ¾ a

[ "58#

Now\ putting t � r cos u\ we obtain

g
r

b

"t−b# dt

zr1−t1
� zr1−b1−b arccos

b
r

"69#

so that the derivative of F"r# simpli_es to

F?"r# � −k 8
9\ 9 ³ r ³ b\

1zr1−b1−b arccos
b
r
\ b ³ r ¾ a

[ "60#

Hence the pressure can be obtained from eqn "5#\ as

p"r# �
1k
pA

F

G

G

j

J

G

G

f

g
a

b

01zs1−b1−b arccos
b
s1 ds

zs1−r1
\ 9 ³ r ³ b\

g
a

r

01zs1−b1−b arccos
b
s1 ds

zs1−r1
\ b ³ r ³ a

[ "61#

Assume s � b:cos 8\ so that a � b:cos 89\ ds � b tan 8:cos 8 d8\ and introduce the function C~"x#
as
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Cfl"x# �

F

G

j

J

G

f

g
80

9

"1 tan 8−8# tan 8 d8

z0−x1 cos1 8
\ 9 ³ x ³ 0\

g
80

arccos"0:x#

"1 tan 8−8# tan 8 d8

z0−x1 cos1 8
\ 0 ³ x ¾

0
cos 89

"62#

to obtain\ on substituting the value of the load\ the _nal expression\ eqn "05#[

Appendix II] Pressure distribution for the conical punch

Finally\ to obtain the pressure distribution\ let us calculate the auxiliary function F"r#\ from "6#
for the pro_le "06#

F"r# �

F

j

J

f

an−r1 u

b
\ 9 ³ r ³ b\

an−r
u

b
"r−zr1−b1#−ru arccos b:r\ b ³ r ¾ a

"63#

so that the derivative of F"r# simpli_es to

−F?"r# � u 8
1r:b\ 9 ³ r ³ b\

1r:b−1:bzr1−b1¦arcos
b
r
\ b ³ r ¾ a

[ "64#

Therefore\ the pressure can be obtained from eqn "5#\ as

p"r# �
3u

pA

F

G

G

j

J

G

G

f

g
a

r

s:b ds

zs1−r1
¦g

a

b

s:b−0:bzs1−b1¦0:1 arccos
b
s

zs1−r1
ds\ 9 ³ r ³ b\

g
a

r

s:b−0:bzs1−b1¦0:1 arccos
b
s

zs1−r1
ds\ b ³ r ¾ a

[ "65#

Apart from the _rst integral "where we use s � b cos 8#\ we put s � b:cos 8\ so that a � b:cos 89\
ds � b tan 8:cos 8 d8\ and use the variable x � r:b[ Introducing now the function Ccon"x# as

Ccon"x#

�

F

G

G

j

J

G

G

f

g
arccos x

9

sin 8 d8

z0−x1:cos1 8
¦g

89

9

00−sin 8¦
0
1

8 cos 81 tan 8 d8

cos 8z0−x1 cos1 8
\ 9 ³ x ³ 0\

g
89

arccos"0:x#

00−sin 8¦
0
1

8 cos 81 tan 8 d8

cos 8z0−x1 cos1 8
\ 0 ³ x ¾ 0:cos 89

"66#

we obtain\ considering the load eqn "08#\ eqn "10#[
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Appendix III] Integrals for the stress _eld

The calculation of stress and displacement _elds with the approach described in Section 4[0
requires lengthy algebraic steps\ so that explicit results are here reported[ The potential derivatives
are "see Hills et al[\ 0882\ Section 6[0\ or Sack_eld and Hills\ 0877#

Nx � Txz:f � −xI0 "67#

Nxz � Txzz:f � xI2 "68#

Nz � Tzz:f � I8 "79#

Ny � −yI0 "70#

Nzz � Tzzz:f � I7 "71#

Nyz � Tyzz:f � yI2 "72#

Nxxz � Txxzz:f � −xy"I3¦I4# "73#

Nyyz � I2−y1"I3¦I4# "74#

Nxyz � Txyzz:f � −xy"I3¦I4# "75#

Nxzz � −xI5 "76#

Nyzz � −yI5 "77#

Nzzz � −I6 "78#

Nxx � Txxz:f � −I0¦x1I1 "89#

Txx � Txxzz:f � −0
1
"I8¦I09#−

0
1
x1I00 "80#

Txy:f � 0
1
xyI00 "81#

Txyz:f � xyI1 "82#

Txxx:f � −2
1
xI00¦x2I01 "83#

Txxxz � 2xI1−x2"1I02¦I03# "84#

Txyyz � xI1−xy1"1I02¦I03# "85#

Txxy � −0
1
yI00¦x1yI01 "86#

Txxyz:f � yI1−x1y"1I02¦I03# "87#

where the symbols I0ÐI03 denote the following integrals

I0 � −g
a

9

`"t# sin"a:1¦1b#

q1r
dt "88#
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I1 � −g
a

9

`"t# sin"a:1¦1b#
qr

dt "099#

I2 � −g
a

9

`"t# sin"2a:1¦1b#

qr2
dt "090#

I3 � −g
a

9

`"t# sin"a:1¦1b#

q1r
dt "091#

I4 � −g
a

9

`"t# sin"a¦1b#

q1r1
dt "092#

I5 � −g
a

9

`"t# sin"2a:1#

r2
dt "093#

I6 � g
a

9

`"t#t cos"2a:1#

r2
dt¦zI5 "094#

I7 � −g
a

9

`"t# sin"a:1#
r

dt "095#

I8 � g
a

9

`"t#b dt "096#

I09 � g
a

9

`"t#"t cos b−z sin b#
q

dt "097#

I00 � −g
a

9

`"t# sin"1b#

q1
dt "098#

I01 � −g
a

9

`"t# sin"a:1¦2b#

q2r
dt "009#

I02 � −g
a

9

`"t# sin"a¦2b#

q2r1
dt "000#

I03 � −g
a

9

`"t# sin"2a:1¦1b#

q1r2
dt "001#

where

r3 �"r1¦z1−t1#1¦3z1t1 "002#
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q3 � ðz¦r cos"a:1#Ł1¦ðt¦r sin"a:1#Ł1 "003#

and _nally

tan a �
1zt

r1¦z1−t1
\ 9 ¾ a ¾ p "004#

tan b �
t¦r sin"a:1#
z¦r cos"a:1#

\ 9 ¾ b ¾ p[ "005#
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